
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019 51

Separable and Reversible Data Hiding in Encrypted
Images Using Parametric Binary Tree Labeling

Shuang Yi , Student Member, IEEE, and Yicong Zhou , Senior Member, IEEE

Abstract—This paper first introduces a parametric binary tree
labeling scheme (PBTL) to label image pixels in two different
categories. Using PBTL, a data embedding method (PBTL–DE)
is proposed to embed secret data to an image by exploiting spatial
redundancy within small image blocks. We then apply PBTL–DE
into the encrypted domain and propose a PBTL-based reversible
data hiding method in encrypted images (PBTL–RDHEI). PBTL–
RDHEI is a separable and reversible method that both the original
image and secret data can be recovered and extracted losslessly and
independently. Experiment results and analysis show that PBTL–
RDHEI is able to achieve an average embedding rate as large as
1.752 bpp and 2.003 bpp when block size is set to 2 × 2 and 3 × 3,
respectively.

Index Terms—Reversible data hiding, encrypted images,
parametric binary tree labeling scheme, privacy protection.

I. INTRODUCTION

IMAGE encryption is a technique to transform the original
meaningful image into a noise-like one to prevent unautho-

rized access [1]. Using the correct security key, users are able
to decrypt the image to see its original content [2]. Modern
cryptography mainly focus on the block cipher and stream ci-
pher. Different from the image encryption, reversible data hiding
(RDH) is a technique to embed secret data into cover images by
slightly modifying their pixel values [3]. It aims to imperceptibly
modify the cover image pixel values. Existing RDH methods are
almost derived from the following three fundamental strategies:
lossless compression [4], [5], histogram shifting (HS) [6] and
difference expansion [7], [8]. Due to the reversible property, the
original image can be fully recovered after extracting the secret
data. This can be used in many applications such as medial and
military image processing.

Recently, due to the development of cloud computing and
cloud storage, many researchers show their interests in devel-
oping reversible data hiding method in encrypted images (RD-
HEI) [9]–[15]. In this scheme, there are three end users: the

Manuscript received November 15, 2017; revised March 29, 2018; accepted
May 12, 2018. Date of publication June 7, 2018; date of current version De-
cember 20, 2018. This work was supported in part by the Macau Science and
Technology Development Fund under Grant FDCT/189/2017/A3, and in part
by the Research Committee at University of Macau under Grant MYRG2016-
00123-FST and Grant MYRG2018-00136-FST. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was Prof.
Balakrishnan Prabhakaran. (Corresponding author: Yicong Zhou.)

The authors are with the Department of Computer and Information Science,
University of Macau, Macau 999078, China (e-mail:, yishuang0227@gmail.
com; yicongzhou@umac.mo).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2844679

content-owner, data-hider and receiver. Here the content-owner
is also regarded as the original image provider who encrypts the
image before sending it to the data-hider. The data-hider embeds
some secret data into the encrypted image and has no privilege
to access the original image content. At the receiver end, we
desire that users only with specific authority are able to access
the original image, secret data or both. This scheme can be used
in many privacy-preserving applications such as cloud storage,
medical image management system [16], secure remote sensing
system [9], etc. Take the cloud storage for example, in order
to protect the original image content from been revealed to the
public, the content-owner encrypts it before sending it to the
cloud. Without knowing the original image content, the cloud
administrator who acts as the data-hide wants to embed some
additional data, e.g., the image source information, into the en-
crypted image for the purpose of image management. At the
receiver side, according to different privileges, one can obtain
the secret data or original image separately.

Existing RDHEI methods can be classified into three cate-
gories, namely reserving room before encryption (RRBE) [11],
[17]–[20], reserving room after encryption (RRAE) [9], [16],
[21] and vacating room by encryption (VRBE) [22]–[24]. The
RRBE methods use some traditional RDH methods or exploit
spatial redundancy from the original image to reserve spare
room before image encryption. The second category mainly
uses the standard image encryption algorithms such as AES,
RC4 or homomorphic encryption to encrypt the original image
directly. The VRBE methods adopt some specific encryption
algorithm to encrypt the original image while keeping spatial
redundancy in the encrypted image so that it can be exploited
for data embedding.

Ma et al. [11] first proposed a RRBE method. They divide
the original image into smooth area and coarse area, and embed
several least significant bit (LSB) planes of the coarse area into
the smooth area using the traditional RDH method [6]. The
reserved LSB planes are then used for data embedding. Mathew
et al. [20] improved Ma’s method by divide the original image
into small blocks and then separate these blocks into smooth
and coarse areas for spare space reservation. Cao et al. [18]
adopt the sparse representation technique to compress the small
smooth image blocks to reserve room. Method in [17] randomly
select some pixels from the original image and predict them by
their surrounding pixels, the obtained prediction-error values
are encrypted and reserved for data embedding. Yi et al. [19]
improved Zhang’s method [17] by predicting half of the pixels in
the original image so that the embedding rate can be increased.

1520-9210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9499-1033
https://orcid.org/0000-0002-4487-6384
mailto:yishuang0227@gmail.global advance �reakcnt @ne penalty -@M com
mailto:yishuang0227@gmail.global advance �reakcnt @ne penalty -@M com
mailto:yicongzhou@umac.mo

52 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

Although using the traditional RDH method to reserve room
from the original image is more efficient and will obtain a larger
embedding rate than RRAE methods, it may be impractica-
ble. Because the content-owner have no idea about the size of
the forthcoming data, or the content-owner may has no com-
putational capacity to apply the RDH to reserve room [25].
Therefore, a lot of researchers are mainly focus on developing
RRAE methods. Puech et al. [26] embed secret data into the
AES-encrypted image and use local standard deviation to re-
construct the original image. Zhang [16] and Hong et al. [27]
use the stream cipher to encrypt the original image and divide
the encrypted image into equal sized small blocks. Then each
block is embedded with one bit of the secret data by flipping
the 3 LSBs of half of the pixels that randomly selected from
the block. Li [28] modified Zhang’s method [16] by flipping the
pixels in the specific positions to embed data. Zhou et al. [9] use
a public key modulation mechanism to embed secret data. In this
method, one encrypted image block can embed more than one
bit of the secret data. Thus, the embedding rate is significantly
improved. At the receiver side, the SVM technique is adopt to
extract the secret data and recover the original image. These are
joint VRAE methods [9], [16], [27], [28] that the data extraction
and image recovery are performed simultaneously. In addition,
the data extraction and image recovery are based on analyzing
the local smoothness of the directly decrypted image. Thus, they
may suffer from incorrect extracted data and recovered image
when block size is small. More practically, methods in Zhang
et al. [21], [29] and Zheng et al. [30] suggest to develop sepa-
rable VRAE methods by compressing some LSB planes in the
stream cipher encrypted image to reserve room for data em-
bedding. In this way, data extraction and image recovery can
be performed separately. In [31], the pseudorandom sequence
modulation mechanism is adopted to embed secret data. Wu
et al. [32] embed secret data by replacing the specific bit po-
sitions in the two most significant bit (MSB) planes. Methods
in [33]–[35] suggest to use the homomorphic encryption to en-
crypt the original image. However, these methods suffer from
pixel expansion that the enlarged bit depth of pixels will result
in a larger storage space.

Science reserving room from the stream cipher encrypted im-
age is quite difficult and results in low embedding rate, some
researchers try to develop VRBE method. Method in [22] di-
vides the original image into blocks, then a coarse-grained per-
mutation is used to change block locations within the image
and a fine-grained permutation is applied to change pixel loca-
tions within the block. Data embedding is performed using the
HS method in each block. This method suffers from information
leakage in the encrypted image, because only the pixel locations
are changed. Method in [23] uses a modulation operation to en-
hance the image encryption security. However, it is also limited
in embedding rate and requires the pixel values of the encrypted
image within the rage of [1, 254]. In Huang et al.’s method [24],
the original image is encrypted by block permutation and block
based bit-XOR. Then the traditional RDH method such as differ-
ence histogram shifting (DHS) and prediction-error histogram
shifting (PHS) are utilized to embed secret data. In [36], stream
cipher is applied to several MSB planes of the image, and HS

Fig. 1. Distribution of binary codes based on a full binary tree.

is utilized to embed secret data into the rest LSB planes of each
encrypted image block.

In this paper, we propose an RDHEI method using paramet-
ric binary tree labeling scheme (PBTL-RDHEI). It is a VRBE
method that keeps spatial correlations within small encrypted
image blocks, so that secret data embedding can be accom-
plished by exploiting the spatial redundancy from the encrypted
image. Different from the methods in [22]–[24] that use the tra-
ditional RDH method to embed secret data, we adopt the PBTL
based reversible data embedding so that the embedding rate can
be significantly improved. The contributions of this paper are
summarized as follows:

1) We propose a parametric binary tree labeling scheme
(PBTL) to label pixels in two different categories. Select-
ing different settings of parameters, PBTL will provide
different pixel labeling strategies.

2) Using PBTL, we propose a data embedding algorithm
(PBTL-DE). It exploits spatial redundancy in small im-
age blocks and embeds secret data into cover images using
pixel labeling and bit replacement. Different from the tra-
ditional data embedding methods that embed secret data
by modifying the plaintext cover image pixel values in
an imperceptive way, PBTL-DE is designed for encrypted
images. Thus, the significant changes to pixel values are
acceptable.

3) Based on PBTL-DE algorithm, we further propose a
PBTL-based RDHEI method (PBTL-RDHEI). Simula-
tion results of applying PBTL-RDHEI to 1000 randomly
selected test images demonstrate that PBTL-RDHEI is
able to achieve an average embedding rate as large as
1.752 bpp and 2.003 bpp when block size is set to 2× 2
and 3× 3, respectively.

The rest of this paper is organized as follows: Section II pro-
poses a parametric binary tree labeling scheme (PBTL). Using
PBTL, a data embedding method is introduced in Section III.
Section IV proposes the PBTL-RDHEI algorithm. Sections V
analyze the redundancy preserving property of the image en-
cryption method in PBTL-RDHEI. Section VI analyze the per-
formance and security of PBTL-RDHEI. Section VII shows
the experiment results and comparisons to some related works.
Finally, Section VIII concludes this paper.

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 53

Fig. 2. Example of labeling bits selection when β = 1 and α = 1 to 7.

Fig. 3. Example of labeling bits selection when β = 2 and α = 1 to 7.

II. PARAMETRIC BINARY TREE LABELING SCHEME

In this section, we propose a parametric binary tree labeling
scheme (PBTL). It is designed to label pixels in two different
categories, namely G1 and G2 . For pixels with 8-bit depth, we
use α and β bits of binary code to label pixels in G1 and G2 ,
respectively, where 1 � α, β � 7.

To better explain our idea, we use a full binary tree structure,
as shown in Fig. 1, to illustrate the distribution of binary labeling
bits. As can be seen, the binary tree has 7 layers of child node,
and the ith layer contains 2i nodes, where i = 1, 2, . . . , 7.

First of all, given a parameter β, we use the binary code in the
first node of the βth layer to label pixels in G2 . Thus, ‘0 . . . 0

︸ ︷︷ ︸

β

’ is

adopted. For G2 , all pixels are labeled by the same labeling bits
‘0 . . . 0
︸ ︷︷ ︸

β

’. For G1 , according to the known value β and another

given parameter α, pixels are classified into na sub-categories,
where nα is calculated by Eq. (1).

nα =
{

2α − 1, if α � β
(2β − 1) ∗ 2α−β , otherwise

(1)

For pixels in a sub-category, we use the same α-bit binary code
to label them, and for pixels in different sub-categories, different

α-bit binary codes are applied. Thus, nα different α-bit binary
codes are utilized to label nα sub-categories, respectively. Next,
we analyze the content of these nα binary codes from the fol-
lowing three aspects.

1) When α = β, as shown in Fig. 1, the first node of the
βth layer ‘0 . . . 0

︸ ︷︷ ︸

β

’ is selected to label pixels in G2 , and

the remaining nα = 2α − 1 nodes of binary codes in the
same layer are utilized to label pixels in nα sub-categories
of G1 , respectively.

2) When α < β, for each of the αth layer, we ignore the
first node and use the remaining nα = 2α − 1 nodes of
binary codes to label pixels in nα sub-categories of G1 .
The illustrative examples can be found in Figs. 3 and 4.

3) When α > β, for each of the αth layer, only the binary
codes that are not derived from the node ‘0 . . . 0

︸ ︷︷ ︸

β

’ are se-

lected to label pixels in nα sub-categories of G1 . Figs. 2–4
show the examples of labeling bits selection when α = 1
to 7, β equals to 1, 2 and 3, respectively. As can be seen,
for example, in Fig. 2, all binary codes that derived from
‘0’ are ignored and the remaining binary codes in αth
layer are kept.

54 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

Fig. 4. Example of labeling bits selection when β = 3 and α = 1 to 7.

Fig. 5. Framework of PBTL–DE.

III. DATA EMBEDDING USING PBTL

Using PBTL, we propose a data embedding method (PBTL-
DE) to embed secret data into a cover image. Firstly, we intro-
duce how to embed secret data into a cover image using PBTL,
and then explain how to extract secret data and recover the cover
image.

A. Data Embedding

The framework of PBTL-DE is shown in Fig. 5. It consists
four steps, namely Step 1: image blocking; Step 2: pixel group-
ing; Step 3: pixel labeling using PBTL and Step 4: payload
embedding. Next, we introduce these four steps one by one.

Step 1: Image blocking: For an 8-bits depth original image I
with a size of M ×N , we first divide it into a number of s× s
non-overlapped small blocks. For example, the block size is set
to 2× 2 or 3× 3.

Step 2: Pixel grouping: For all pixels in I, we separate them
into four sets, namely: reference pixel (Pr), special pixel (Ps),
embeddable pixel (Pe) and non-embeddable pixel (Pn). Here,
Pr consists of nr pixels that selected by user-defined rules. For
example, we select the first pixel (or center pixel) of each 2× 2
(or 3× 3) block to form Pr . These pixels will be kept unmodi-
fied during data embedding phase. Ps contains one pixel which
will be utilized to store some parameters. Any pixel except in Pr

can be selected to be Ps . Without loss of generality, we choose
one pixel in the first block to be Ps . Thus, for each block
except for the first one, one reference pixel is corresponding
to 3 (for 2× 2) or 8 (for 3× 3) non-reference pixels; other-
wise, one reference pixel is corresponding to 2 (for 2× 2) or 7
(for 3× 3) non-reference pixels. Then, for each of the remain-
ing (MN − nr − 1) pixels Ii(i = 1, 2, . . . ,MN − nr − 1), we

Fig. 6. Illustrative example of pixel grouping when block size is 2 × 2.

calculate its difference value ei by

ei = Ii − Iref
i (2)

where Iref
i ∈ Pr is the corresponding reference pixel of Ii . If

ei satisfied the following condition, the pixel Ii belongs to Pe ;
otherwise, it is in set Pn .

⌈

−nα

2

⌉

� ei �
⌊

nα − 1
2

⌋

(3)

where na is a positive integer, �∗� and �∗� are the ceil and floor
operations, respectively. Here, Pe and Pn contain ne and nn

pixels, respectively, where pixels in Pe can be utilized to embed
secret data while Pn can not. Thus, MN = nr + ne + nn + 1.
Fig. 6 shows an example of pixel grouping when block size is
2× 2.

After obtaining the difference set e = {ei}M N−nr −1
i=1 , we can

obtain its histogram h(e) by

h(e) = #{1 � i � MN − nr − 1 : ei = e}, ∀e ∈ Z (4)

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 55

Algorithm 1: PBTL-DE.
Input: Original image I, Secret dataM, parameters α
and β.
1: Divide I into equal size non-overlapping blocks and

classify pixels into four groups Pr , Ps , Pe and Pn .
2: Construct the payload P , where it consists of the secret

dataM, the first β bits of each
pixel in Pn and 8 bits in Ps .

3: for each pixel in Pe do
4: According to the difference value e, reconstruct

the pixel by replacing α labeling bits and (8− α)
payload bits.

5: end for
6: for each pixel in Pn do
7: Replace its first β bits by ‘0 . . . 0

︸ ︷︷ ︸

β

’ and keep the

remain (8− β) bits unmodified.
8: end for
9: Convert α and β into binary bits and store them into

Ps by bit replacement.
Output: Marked image Î.

where # is the cardinal number of a set. Due to the spatial
correlations of pixels within the same block, the histograms
of e form like a Laplace distribution with location parameter
equals to 0. As shown in Eq. (3), in order to achieve a higher
embedding rate, we use the pixel whose difference value falls
into the nα center bins of histogram h(e) to embed secret data.

Step 3: Pixel labeling using PBTL: Because the pixel loca-
tions of Pr and Ps are pre-defined, they can be easily distin-
guished, we only need to label the pixels in Pn and Pe . Given
two parameters α and β, we use the binary codes generated by
PBTL to label pixels in Pn and Pe , respectively. For example,
for each pixel in Pn , a β-bit binary code ‘0 . . . 0

︸ ︷︷ ︸

β

’ is adopted to

label it by bit replacement, and the remaining (8− β) bits are
kept unmodified. For pixels in Pe , they can be classified into
nα sub-categories according to different values of e. Thus, nα

different α-bit binary codes are utilized to label pixels in each
sub-category, respectively.

Step 4: Payload embedding: The payload contains three parts:
the original 8 bits of pixel in Ps , the replaced original β bits of
each pixel in Pn , and the secret data.

After pixel labeling, the remaining (8− α) bits of each pixel
in Pe are reserved to embed payload bits by bit replacement.
Thus, totally (8− α)ne bits of the payload can be successfully
embedded. The parameters α and β are important for data ex-
traction and image recovery, thus, they need to be stored as
well. Since 1 � α, β � 7, they can be successfully stored by 8
bits in Ps by bit replacement. Therefore, the marked image is
generated, and the detailed procedures of RDH using PBTL are
provided in Algorithm 1.

Then, we can calculate the effective embedding rate rα,β

(.bpp) under different settings of parameters α and β by

rα,β =
(8− α)ne − βnn − 8

MN
(5)

Fig. 7. Illustrative example of pixel labeling and data embedding when α =
β = 2. (a) Binary code distribution. (b) Pixel bits in Pe and Pn after data
embedding.

which is equivalent to

rα,β =

(8− α)
∑vr

i=vl
h(i)− β(

∑vl−1
j=−255 h(j) +

∑255
k=vr +1 h(k))− 8

MN
(6)

where vl = �−nα

2 � and vr = �nα −1
2 �. Then the maximum em-

bedding rate rmax (.bpp) can be calculated by

rmax = max{rα,β}7α,β=1 (7)

An illustrative example of pixel labeling and data embedding
when α = β = 2 is shown in Fig. 7. As can be seen, ‘00’ is
utilized to label pixels in Pn , and the remaining 6 bits are kept
unmodified. According to Eq. (1), nα = 3. Thus, ‘01’, ‘10’ and
‘11’ are applied to label pixels in Pe when the difference value
e equal to −1, 0 and 1, respectively.

B. Data Extraction and Image Recovery

After obtaining the marked image, according to the param-
eters extracted from Ps , we check the labeling bits of non-
reference pixels and classify them into sets Pe and Pn , accord-
ingly. When the first β bits equal to ‘0 . . . 0

︸ ︷︷ ︸

β

’, the pixel is grouped

in Pn ; otherwise, it is put in Pe . We then extract (8− α) bits
of the payload from the pixel in Pe sequentially. Next, for each
pixel in Pe , according to its α-bit labeling bits, we obtain the
corresponding difference value e and recover the pixel by

Ii = Iref
i + ei (8)

Finally, we recover the replaced two bits of each pixel in Pn and
8 bits of the pixel in Ps using the extracted payload. By now
the secret data is successfully extracted and the original image
is fully recovered.

IV. REVERSIBLE DATA HIDING IN ENCRYPTED

IMAGES USING PBTL

Using PBTL-DE, we propose a RDH method in encrypted
images (PBTL-RDHEI). It encrypts the original image into a
noise like one while keeping spatial correlations within small
image blocks, so that PBTL-DE can be applied to embed se-
cret data into the encrypted image. PBTL-RDHEI consists of
three phases as shown in Fig. 8, namely A) Generation of en-
crypted image; B) Generation of marked encrypted image and

56 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

Fig. 8. Framework of PBTL–RDHEI.

C) Data extraction and image recovery. These three phases are
accomplished by the content-owner, data-hider and receiver, re-
spectively. At the receiver side, using different security keys,
the secret data and original image can be successfully extracted
and recovered. Next, we will introduce these three phases one
by one.

A. Generation of Encrypted Image

Image encryption consists of two procedures: block permuta-
tion and pixel modulation. Assume that an 8-bit depth gray-scale
image O is with a size of M ×N . Firstly, the content-owner
divides O into k non-overlapped blocks O(i)(i = 1, 2, . . . , k)
with a size of s× s, where k = MN/s2 , and s is a small integer
that greater than or equal to 2. Then, image blocks are permuted
according to K̇e , where K̇e = H(O)⊕H(Ke),H(.) is a secure
hash function to produce a hash sequence, ‘⊕’ is the bit-level
XOR operation. Users have flexibility to select any pixel permu-
tation method for image scrambling, and we consider the image
block as a single unit. Here we use the scrambling method in [37]
for demonstration. The scrambled image blocks are denoted as
Ô(i)(i = 1, 2, . . . , k). Next, pixels in Ô(i) are modified by

Ej
(i) = (Ôj

(i) + Ri) mod 256, (j = 1, 2, . . . , s2) (9)

where Ôj
(i) is the jth pixel of block Ô(i) in raster-scan order,

Ri ∈ [0, 255] is a random integer generated by K̇e . Any random
number generator can be used to generate Ri . As an example, we
use K̇e to initialize (r, x0) of the Tent-Sine system (TSS) [38]
to obtain the random number for demonstration, where the TSS
is defined by

xi+1 =
{

rxi/2 + (4− r) sin(πxi)/4 mod 1, xi < 0.5
r(1− xi)/2 + (4− r) sin(πxi)/4 mod 1, xi � 0.5

(10)

Algorithm 2: Generation of initial condition of TSS

Input: K̇e = [k1 , k2 , . . . , k256](ki ∈ {0, 1}, 1 � i � 256).
1: u1 ←

∑64
i=1 ki264−i

2: u2 ←
∑128

i=64 ki2128−i

3: v1 ←
∑192

i=129 ki2192−i

4: v2 ←
∑256

i=193 ki2256−i

5: Initial value x0 ← u1/290

6: Parameter r0 ← u2/290

7: for i = 1 to 2 do
8: xi ← (xi−1uivi/280 + xi−1) mod 1
9: ri ← (ri−1uivi/280 + ri−1) mod 4

10: end for
11: r ← 4− r2
12: x0 ← x2
Output:Initial conditions (r, x0).

where (r, x0) is the initial condition, r ∈ (0, 4] and xi ∈ (0, 1).
Here, we use SHA-256 for demonstration. It is sensitive to the
input content and produces a 256-bit binary hash sequence. The
user-defined key Ke also contains 256 bits. The obtained K̇e

is applied to initialize (r, x0) using Algorithm. 2. The random
value Ri is calculated by

Ri = �xi+1 ∗ 240 mod 256� (11)

According to Eq. (9), the s2 pixels in the ith image block
are added by a same random integer Ri for modulation. Thus,
spatial correlations will be kept in the image blocks of D, and
they can be exploited to embed secret data at the data-hider side.
However, the block size will influence the encryption effect. To
keep a relatively high security, in this study, we set the block
size to 2× 2 and 3× 3 for demonstration.

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 57

B. Generation of Marked Encrypted Image

After obtaining the encrypted image E, the data-hider first di-
vides it into k blocks by the same way in image encryption phase.
Given the parameters α and β, we then can embed payload bits
into image E using PBTL-DE as provided in Algorithm 1. In
order to achieve a higher security, the secret data is encrypted
using Kh before embedded into the encrypted image. We denote
the image E after data embedded in as the marked encrypted
image M.

C. Data Extraction and Image Recovery

At the receiver side, authorized users with different security
keys are able to obtain different contents, secret data, original
image or both, separately.

1) Data Extraction: When holding the data hiding key Kh ,
the receiver can extract the secret data successfully. Firstly, we
divide M̂ into k blocks as in data embedding phase, extract
parameters α and β from Ps . We keep the reference pixels in
Pr unmodified. For the rest 3 ∗ k − 1 pixels, by checking the
first α and β labeling bits in each pixel, we classified them
into Pe and Pn . Then, we extract (8− α) bits of payload from
pixels in Pe sequentially and obtain the encrypted secret data
from the extracted payload bits. Finally, using Kh , we decrypt
the encrypted secret data to obtain the plaintext secret data.

2) Image Recovery: Using K̇e , the receiver is able to obtain
a recovered image that is exactly the same with the original one.
Firstly, after obtaining the payload from M̂ as in data extraction
phase, we recover the replaced β bits in each pixel of Pn and 8
bits in Ps using the payload. Thus, all pixels except in Pe are
recovered. For each pixel in Pe , according to its α labeling bits,
we find its corresponding difference value e and recover it using
Eq. (8). By now the obtained image E is the same as before data
embedding. Next, we recover pixel values in E by

Ôj
(i) = (Ej

(i) −Ri) mod 256, (j = 1, 2, . . . , s2) (12)

where Ri is generated by the same way in image encryption
phase. Finally, we inversely permute the image blocks in Ô and
obtain the original image O.

Due to the reversibility in each step of data extraction and
image recovery, the secret data and original image are obtained
without any error.

V. DISCUSSION

In PBTL-RDHEI, the encryption process uses block permuta-
tion and modulation to transform the original image into a noise-
like one while keeping spatial redundancy within small image
blocks. Data hiding is then applied to the encrypted image by
exploiting the spatial redundancy within the small encrypted im-
age blocks. The proposed image encryption method modulates
each pixel within an image block using the same random integer
(see Eq. (9)). The encrypted image block will retain the spatial
redundancy as it is in the original image. Therefore, images with
less texture in the original image have higher spatial redundancy
and thus can be embedded with more data, achieving a larger
embedding rate. However, the modulation operation may also

reduce the spatial correlations of pixels within the block. Here,
we analyze the redundancy preserving of the image encryption
method in PBTL-RDHEI.

Take the block size 2× 2 for example, we denote the 4 pixels
in an original image block X as x1 , x2 , x3 and x4 , where x1
is the reference pixel and xi ∈ [0, 255] (for i = 1, 2, 3, 4). Then
we can obtain their difference values ej = x1 − xj (for j =
2, 3, 4). After using the pixel modulation operation with a ran-
dom value v (v ∈ [0, 255]), the four pixels x̂i in the new image
block X̂ are calculated by x̂i = (xi + v) mod 256, and the
new difference values êj are obtained using êj = x̂1 − x̂j . If
êj = ej for j = 2, 3, 4, block X̂ and X have the same spatial
correlation. To meet this requirement, one of the following two
conditions needs to be satisfied.

v + xmax < 256 (13)

or

v + xmin � 256 (14)

where xmax = max{x2 , x3 , x4} and xmin = min{x2 , x3 , x4}.
For example, assume that X = [102, 102; 99, 103], we ob-

tain e2 = 0, e3 = 3, e4 = −1, xmax = 103 and xmin = 99. If
v = 100, v + xmax = 203 < 256, Eq. (13) is satisfied, and X̂ =
[202, 202; 199, 203]. Thus, ê2 = e2 = 0, ê3 = e3 = 3, ê4 =
e4 = −1. If v = 153, non of the conditions in Eq. (13) and
(14) is satisfied, and X̂ = [255, 255; 252, 0]. Thus, ê2 = e2 = 0,
ê3 = e3 = 3, ê4 = 255 �= e4 .

In order to analyze the inference of spatial correlations in
block cause by using the pixel modulation operation, we cal-
culate the histogram of difference value set e of Lena image
with or without modulation operation. The results are plotted
in Fig. 9. From the results, we can observe that, the histogram
almost keep the same shape. This means that, by using the block
based pixel modulation operation, the spatial correlation of pix-
els within the same block is well kept, which ensuring the high
embedding rate of the proposed PBTL-RDHEI.

VI. SECURITY AND PERFORMANCE ANALYSIS

In this section, we analyze the security of PBTL-RDHEI,
and compare encryption performance and efficiency between
PBTL-RDHEI and several state-of-the-art methods.

A. Security Analysis

As an encryption domain based RDH method, the PBTL-
RDHEI should ensure the security to both the original image
and secret data. In PBTL-RDHEI, the security to secret data is
provided by data encryption with Kh . It is worth noting that any
secure data encryption algorithm can be used here to encrypt the
secret data. Hence, without Kh , it is extremely difficult to reveal
the secret data. Therefore, we mainly focus on analyzing security
of the image encryption algorithm in withstanding serval attacks
such as the brute-force attack, known/chosen-plaintext attack
and noise attack.

1) Brute-Force Attack: The image encryption process in-
cluding block permutation and modulation. For an M ×N orig-
inal image with block size s× s, there are (MN/s2)! possible

58 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

Fig. 9. Histograms of difference e calculated from image Lena when applied
with and without pixel modulation operation for block sizes are set to (a) 2 × 2
and (b) 3 × 3.

permutations. For pixel modulation, each value of Ri ∈ [0, 255]
is randomly generated. Thus, the possibility of successfully ob-
tain the original image by data-hider without Ke is as small as

1
(M N/s2)!256M N / s 2 , so that the security can be ensured. As can

be seen, with large image size and small block size, a higher
encryption performance to the original image can be achieved.

In order to analyze the key sensitivity in withstanding the
brute-force attack, we use a user-defined 256-bits security key
Ke and other 256 keys Ki

e (i = 1, 2, . . . , 256) to generate initial
conditions (r, x0) for TSS, where Ki

e is the same as Ke except
for flipping the ith bit in Ke . Therefore, Ki

e and Ke are of
only one bit difference. Because TSS is sensitive to the initial
condition, different settings of (r, x0) will result in totally dif-
ferent random values Ri and thus different encrypted images.
Fig. 10 shows the results of initial condition (r, x0) generated
by these 257 keys. As can be seen, tinny changes in the key will
significantly change the initial condition of TSS. We then show
the simulation results of encrypting Lena image using two keys
and obtain the difference of these two encrypted images, where

Fig. 10. Distribution of initial condition (r, x0) generated by 257 different
keys.

Fig. 11. Simulation results of encrypted Lena images using two keys K 1
e and

K 2
e when block size is set to 2 × 2, where K 1

e and K 2
e are with only one bit

difference. (a) The original image. (b) Encrypted image using K 1
e . (c) Encrypted

image using K 2
e . (d) The difference between (a) and (d).

the two keys are with only one bit difference. The results are
shown in Fig. 11. As can be seen, even with one bit change in
the encryption keys, the obtained encrypted images are totally
different. Therefore, the attacker has extreme difficulty in re-
vealing the original image by analyzing the security key. The
proposed algorithm is able to withstand brute-force attack.

2) Known/Chosen-Plaintext Attack: Known-plaintext at-
tack is a cryptanalysis model that the attackers have the plain-
texts and their corresponding ciphertexts and try to reveal all or
part of the secret key. A chosen-plaintext attack is more powerful
than known-plaintext attack, because the attackers can arbitrar-
ily choose plaintexts for encryption and obtain the correspond-
ing ciphertexts. Therefore, an encryption algorithm that can
withstand chosen-plaintext attack is also secure against known-
plaintext attack.

In order to show the robustness of the proposed encryption
algorithm in withstanding chosen-plaintext attack, we perform
differential analysis to the proposed algorithm. Two original
images are encrypted using the same key and obtain the
difference between their cipher images. Here the two original
images are of one bit difference. The simulation results of
differential analysis are shown in Fig. 12. From the results,
we can observe that a slight change in the original image will
result in a totally different encrypted image, which is extremely
difficult for attackers to obtain useful information by analyzing
the pairs of plaintexts and ciphertexts. Therefore, our algorithm
can withstand the known/chosen-plaintext attack.

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 59

Fig. 12. Simulation results of differential analysis on Peppers image when block size is set to 2 × 2. (a) The original image O1 . (b) The original image O2 ,
where O1 and O2 are with only one bit difference. (c) Encrypted results of O1 . (d) Encrypted results of O2 . (e) The difference between (c) and (d).

Fig. 13. Noise attack analysis of the encryption method in PBTL–RDHEI
when block size is 2 × 2. The top row shows the encrypted Crowd images (a)
without noise; (b) with 1% salt and pepper noise; (c) with 1% Gaussian noise;
(d) with 60 × 60 image cut, respectively. The bottom row shows the recovered
images.

3) Noise and Data Loss Attacks: Fig. 13 shows the noise and
data loss attacks to the encrypted images. We use the Crowd
image for demonstration and set the block size to 2× 2. The
results show that most of the original image information can be
recovered when the encrypted image is added with 1% of the
noise (Salt & Pepper noise or Gaussian noise) or with 60× 60
pixel cutting.

B. Performance Analysis

Here, we compare the encryption performance and efficiency
between the proposed algorithm and several related works.

1) Encryption Performance Comparison: Table I compares
the image encryption performance of the proposed algorithm
with that of several state-of-the-art methods. As can be seen, the
proposed encryption algorithm makes the histogram of the en-
crypted image uniform distributed. Although it preserves spatial
redundancy within small image blocks like the methods in [24]
and [22], it has high security level that can withstand chosen-
plaintext and other attacks.

2) Efficiency Analysis: Time and space complexities are of-
ten used to estimate the efficiency of an algorithm. Time com-
plexity, also called the computation complexity, is to measure
the running time of an algorithm. Space complexity is a mea-
sure of working storage that an algorithm needs with respect to
the input content. In PBTL-RDHEI, the encryption/decryption
process contains block permutation and modulation. The

processing time doesn’t rely on the content of the original image.
Given an image with k blocks, the time and space complexities
of image encryption/decryption are O(k) and O(MN + k), re-
spectively. The data embedding/extraction mainly contains pixel
grouping and modification. Each one needs to go through all
pixels only once except for Pr . Therefore, the time complexity
of data embedding/extraction is O(MN − k). In the embed-
ding/extraction process, a temporary workspace is needed to
store the original bits in Pn and Ps that are replaced by label-
ing bits and parameters. The temporary workspace is less than
MN . Therefore, given the secret data with size of Nd , the space
complexity of data embedding/extraction is O(MN + Nd).

Next, we experimentally compare the time complexity of
PBTL-RDHEI with that of several related works under various
embedding rates. The measure of the time complexity is carried
out over the Matlab implementation by using the built-in time
function in a workstation with Intel i7@3.40 GHz CPU and
8 GB RAM. We randomly selected 100 images with size of
512× 512 from the BowsBase1 database for testing, the average
results of time complexity under various embedding rates are
plotted in Fig. 14. Here the time is recorded for the processes of
image encryption, data embedding, data extraction and image
recovery. The images with sizes of 128× 128 and 256× 256
are generated by downsampling the selected 100 images. We can
observe that images with a larger size will require more time
to finish all processes, and that the proposed PBTL-RDHEI has
almost the lowest computation cost under various embedding
rates. This verifies the efficiency of PBTL-RDHEI.

VII. EXPERIMENT RESULTS AND COMPARISONS

In this section, we show the experiment results and com-
parisons of PBTL-RDHEI with several existing related works.
Three image database are used in this section, including the
Miscelaneous,2 Kodak3 and BowsBase. Four commonly used
test images Lena, Airplane, Man and Crowd are selected from
the Miscelaneous database, two images kodim08 and kodim13
are selected from the Kodak database and the rest test images
are selected from the BowsBase database.

Fig. 16 shows the distribution of pixel values of Lena im-
age after image encryption and data embedding processes,

1http://bows2.ec-lille.fr/
2http://decsai.ugr.es/cvg/dbimagenes/g512.php
3http://www.r0k.us/graphics/kadak

60 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

TABLE I
ENCRYPTION PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM WITH SEVERAL RELATED WORKS

Fig. 14. Time complexity of PBTL–RDHEI and several related works under various embedding rates and image sizes. (a) 512 × 512. (b) 256 × 256.
(c) 128 × 128.

Fig. 15. Simulation results of applying PBTL–RDHEI to Lena image when block size is set to 2 × 2. (a) The original image. (b) Encrypted image. (c) Marked
encrypted image with α = 5 and β = 2, rm ax = 1.722 bpp. (d) recovered image, PSNR = +∞ dB. (e) The difference between (a) and (d).

respectively. From the results, we can observe that, pixel values
of the encrypted image and marked encrypted image are uni-
form distributed. Although the data hider is able to know the
pixel spatial correlations within a block, s/he can not obtain the
relationship between blocks, since the block is small, and block
locations and pixel values within the block are changed.

Fig. 15 shows the experiment results of applying PBTL-
RDHEI to Lena image when block size is set to 2× 2, pa-
rameters α = 5 and β = 2. From the results, we can observe
that under the given settings of block size and parameters, the
proposed algorithm reaches the maximum embedding rate of
1.722 bpp. Due to the reversibility of PBTL-RDHEI, the origi-
nal image can be successfully recovered without any error (see
Fig. 15(d)).

Tables II–V show the embedding rates of test images Lena,
Airplane, Man and Crowd under various α and β when block
size is set to 2× 2 and 3× 3, respectively. From the results, we
can observe that when α is set to small values, e.g., α = 1 or
2, the marked encrypted image is unable to or can only embed
a few secret data. For different images, the parameters set to
achieve the maximum embedding rate are different. In general,
images with block size 3× 3 are able to embed more secret
data than that of 2× 2, because more pixels will be classified
into the embeddable pixel category. In addition, images with
less texture in the original version can achieve larger maximum
embedding rate. For example, image Airplane can reach the
maximum embedding rate of 1.903 bpp and 2.188 bpp when
block size is set to 2× 2 and 3× 3, respectively.

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 61

Fig. 16. Distribution of pixel values of Lena image in each step when block size is 2 × 2. (a) The original image. (b) The encrypted image. (c) The marked
encrypted image.

TABLE II
EMBEDDING RATES OF IMAGE Lena UNDER VARIOUS α AND β WHEN BLOCK SIZE IS 2 × 2 AND 3 × 3

TABLE III
EMBEDDING RATES OF IMAGE Airplane UNDER VARIOUS α AND β WHEN BLOCK SIZE IS 2 × 2 AND 3 × 3

TABLE IV
EMBEDDING RATES OF IMAGE Man UNDER VARIOUS α AND β WHEN BLOCK SIZE IS 2 × 2 AND 3 × 3

TABLE V
EMBEDDING RATES OF IMAGE Crowd UNDER VARIOUS α AND β WHEN BLOCK SIZE IS 2 × 2 AND 3 × 3

62 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

TABLE VI
MAXIMUM EMBEDDING RATE COMPARISONS OF DIFFERENT IMAGES APPLIED BY PBTL–RDHEI AND SEVERAL RELATED ALGORITHMS

Fig. 17. Average embedding rates of 1000 marked encrypted images under various α and β when block sizes are (a) 2 × 2 and (b) 3 × 3.

TABLE VII
MAXIMUM EMBEDDING RATE OF TEST IMAGES WITH OR WITHOUT PIXEL MODULATION PROCESS UNDER DIFFERENT BLOCK SIZES

Table VI compares the maximum embedding rate of PBTL-
RDHEI with several existing works. Because some related
works may not fully reversible as analyzed in Section I, for
fair of comparison, the result in Table VI is under the same
situation that the secret data and original image can be fully
extracted and recovered. In order to achieve a better perfor-
mance, we set the block size to 4× 4 in [22] and [23]. For
Zhou et al. ’s method [9], 3 bits of the secret data are embed into
each encrypted image block for demonstration. In Huang et al.’s
method [24], DHS 2(3) and PHS 2(3) indicate using difference
histogram shifting and prediction-error expansion to embed se-
cret data when block size is set to 2× 2(3× 3), respectively.
For PHS 2, the median edge detector is used and for PHS 3,
the rhombus predictor is applied. For Ma et al.’s method [11],
the 3 LSB planes are reserved for data embedding. As can be
seen from the result, the proposed PBTL-RDHEI significantly
improved the embedding rates.

To further analyze the embedding rate variation tendency
under various α and β, we randomly select 1000 images from

the BowsBase database to show the average embedding rates
under different block sizes. The results are plotted in Fig. 17.
From the results, we can observe that the embedding rates have
similar variation tendency when block sizes are set to 2× 2 and
3× 3 under various α and β. When α = 4, β = 2, images reach
the maximum average embedding rates rmax = 1.722 bpp and
rmax = 2.018 bpp when block sizes are set to 2× 2 and 3× 3,
respectively.

The embedding ability of PBTL-DE depends on the spatial
redundancy of pixels within blocks. In PBTL-RDHEI, the spa-
tial redundancy of blocks in the original image is modified by
pixel modulation using Eq. (9). In order to show the influence
of pixel modulation process to the image spatial redundancy,
we calculate the maximum embedding rate of some test im-
ages with and without pixel modulation. The results are listed in
Table VII, where ‘Aver1000’ indicates average result of 1000
images that randomly selected from the BowsBase database.
From the results, we can observe that the modulation operation
slightly reduced the embedding rates. Thus, the proposed image

YI AND ZHOU: SEPARABLE AND REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES USING PARAMETRIC BINARY TREE LABELING 63

encryption well kept the spatial redundancy of the pixels within
blocks.

VIII. CONCLUSION

In this paper, we first proposed a parametric binary tree la-
beling scheme (PBTL). Using PBTL, we then proposed a data
embedding method (PBTL-DE) and further applied it into the
encrypted images application (PBTL-RDHEI). The PBTL-DE
is specific designed for encrypted-domain based application,
because it significantly changed the pixel values in the im-
age. PBTL-RDHEI is a full reversible method that both the
secret data and original image can be extracted without any
error. Experiment results and comparisons have shown that
the PBTL-RDHEI significantly improved the embedding rate.
Security analysis has demonstrated the robustness of PBTL-
RDHEI in withstanding brute-force and know/chosen-plaintext
attacks.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valued comments which helped to improve this paper.

REFERENCES

[1] Y. Q. Shi, X. Li, X. Zhang, H. Wu, and B. Ma, “Reversible data hid-
ing: Advances in the past two decades,” IEEE Access, vol. 4, no. 99,
pp. 3210–3237, May 2016.

[2] Z. Hua, Y. Zhou, C.-M. Pun, and C. L. P. Chen, “2D sine logistic modu-
lation map for image encryption,” Inf. Sci., vol. 297, pp. 80–94, 2015.

[3] X. Zhang, “Reversible data hiding with optimal value transfer,” IEEE
Trans. Multimedia, vol. 15, no. 2, pp. 316–325, Feb. 2013.

[4] J. Fridrich, M. Goljan, and R. Du, “Lossless data embedding: New
paradigm in digital watermarking,” EURASIP J. Appl. Signal Process.,
vol. 2002, no. 1, pp. 185–196, 2002.

[5] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless
generalized-LSB data embedding,” IEEE Trans. Image Process., vol. 14,
no. 2, pp. 253–266, Feb. 2005.

[6] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp. 354–362,
Mar. 2006.

[7] A. M. Alattar, “Reversible watermark using the difference expansion of
a generalized integer transform,” IEEE Trans. Image Process., vol. 13,
no. 8, pp. 1147–1156, Aug. 2004.

[8] Y. Hu, H.-K. Lee, and J. Li, “DE-based reversible data hiding with im-
proved overflow location map,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 2, pp. 250–260, Feb. 2009.

[9] J. Zhou et al., “Secure reversible image data hiding over encrypted domain
via key modulation,” IEEE Trans. Circuits Syst. Video Technol., vol. 26,
no. 3, pp. 441–452, Mar. 2016.

[10] Z. Qian, X. Zhang, and S. Wang, “Reversible data hiding in encrypted
JPEG bitstream,” IEEE Trans. Multimedia, vol. 16, no. 5, pp. 1486–1491,
Aug. 2014.

[11] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding in
encrypted images by reserving room before encryption,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 3, pp. 553–562, Mar. 2013.

[12] S. Yi and Y. Zhou, “Binary-block embedding for reversible data hiding in
encrypted images,” Signal Process., vol. 133, pp. 40–51, 2017.

[13] X. Liao, K. Li, and J. Yin, “Separable data hiding in encrypted image based
on compressive sensing and discrete fourier transform,” Multimedia Tools
Appl., vol. 76, no. 20, pp. 20 739–20 753, 2017.

[14] X. Liao and C. Shu, “Reversible data hiding in encrypted images based on
absolute mean difference of multiple neighboring pixels,” J. Vis. Commun.
Image Represent., vol. 28, pp. 21–27, 2015.

[15] M. Li, D. Xiao, Y. Zhang, and H. Nan, “Reversible data hiding in en-
crypted images using cross division and additive homomorphism,” Signal
Process.: Image Commun., vol. 39, pp. 234–248, 2015.

[16] X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal
Process. Lett., vol. 18, no. 4, pp. 255–258, Apr. 2011.

[17] W. Zhang, K. Ma, and N. Yu, “Reversibility improved data hiding in
encrypted images,” Signal Process., vol. 94, pp. 118–127, 2014.

[18] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, “High capacity reversible
data hiding in encrypted images by patch-level sparse representation,”
IEEE Trans. Cybern., vol. 46, no. 5, pp. 1132–1143, May 2016.

[19] S. Yi and Y. Zhou, “An improved reversible data hiding in encrypted
images,” in Proc. IEEE China Summit Int. Conf. Signal Inf. Process.,
2015, pp. 225–229.

[20] T. Mathew and M. Wilscy, “Reversible data hiding in encrypted images by
active block exchange and room reservation,” in Proc. Int. Conf. Contemp.
Comput. Inform., 2014, pp. 839–844.

[21] X. Zhang, “Separable reversible data hiding in encrypted image,”
IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 826–832, Apr.
2012.

[22] Z. Yin, B. Luo, and W. Hong, “Separable and error-free reversible
data hiding in encrypted image with high payload,” Scientific World J.,
vol. 2014, 2014, Art.ID. 604876.

[23] Z. Yin, H. Wang, H. Zhao, B. Luo, and X. Zhang, “Complete separable
reversible data hiding in encrypted image,” in Proc. 1st Int. Conf. Cloud
Comput. Security, 2015, pp. 101–110.

[24] F. Huang, J. Huang, and Y. Q. Shi, “New framework for reversible data
hiding in encrypted domain,” IEEE Trans. Inf. Forensics Security, vol. 11,
no. 12, pp. 2777–2789, Dec. 2016.

[25] Z. Qian and X. Zhang, “Reversible data hiding in encrypted images with
distributed source encoding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 4, pp. 636–646, Apr. 2016.

[26] W. Puech, M. Chaumont, and O. Strauss, “A reversible data hiding method
for encrypted images,” in Proc. SPIE Security, Forensics, Steganogr. Wa-
termarking Multimedia Contents X, 2008, pp. 68191E.

[27] W. Hong, T.-S. Chen, and H.-Y. Wu, “An improved reversible data hid-
ing in encrypted images using side match,” IEEE Signal Process. Lett.,
vol. 19, no. 4, pp. 199–202, Apr. 2012.

[28] M. Li, D. Xiao, Z. Peng, and H. Nan, “A modified reversible data hiding in
encrypted images using random diffusion and accurate prediction,” ETRI
J., vol. 36, no. 2, pp. 325–328, 2014.

[29] X. Zhang, Z. Qian, G. Feng, and Y. Ren, “Efficient reversible data hiding
in encrypted images,” J. Vis. Commun. Image Represent., vol. 25, no. 2,
pp. 322–328, 2014.

[30] S. Zheng et al., “Lossless data hiding algorithm for encrypted images
with high capacity,” Multimedia Tools Appl., vol. 75, pp. 13765–13778,
2016.

[31] X. Zhang, C. Qin, and G. Sun, “Reversible data hiding in encrypted images
using pseudorandom sequence modulation,” Digit. Forensics Watermak-
ing, vol. 7809, pp. 358–367, 2013.

[32] X. Wu and W. Sun, “High-capacity reversible data hiding in encrypted
images by prediction error,” Signal Process., vol. 104, pp. 387–400,
2014.

[33] Y.-C. Chen, C.-W. Shiu, and G. Horng, “Encrypted signal-based reversible
data hiding with public key cryptosystem,” J. Vis. Commun. Image Rep-
resent., vol. 25, no. 5, pp. 1164–1170, 2014.

[34] C.-W. Shiu, Y.-C. Chen, and W. Hong, “Encrypted image-based reversible
data hiding with public key cryptography from difference expansion,”
Signal Process.: Image Commun., vol. 39, pp. 226–233, 2015.

[35] X. Zhang, J. Wang, Z. Wang, and H. Cheng, “Lossless and reversible
data hiding in encrypted images with public key cryptography,” IEEE
Trans. Circuits Syst. Video Technol., vol. 26, no. 9, pp. 1622–1631, Sep.
2016.

[36] Z. Yin, A. Abel, J. Tang, X. Zhang, and B. Luo, “Reversible data hiding
in encrypted images based on multi-level encryption and block histogram
modification,” Multimedia Tools Appl., vol. 76, no. 3, pp. 3899–3920,
2017.

[37] Z. Hua, S. Yi, and Y. Zhou, “Medical image encryption using high-
speed scrambling and pixel adaptive diffusion,” Signal Process., vol. 144,
pp. 134–144, 2018.

[38] Y. Zhou, L. Bao, and C. P. Chen, “A new 1D chaotic system for image
encryption,” Signal Process., vol. 97, pp. 172–182, 2014.

64 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 1, JANUARY 2019

Shuang Yi received the B.E. degree in software en-
gineering from Chongqing University, Chongqing,
China. She is currently working toward the Ph.D. de-
gree in the Department of Computer and Information
Science, University of Macau, Macau, China. Her re-
search interests include multimedia security and sig-
nal/image processing.

Yicong Zhou (M07–SM’14) received the B.S. de-
gree from Hunan University, Changsha, China, and
the M.S. and Ph.D. degrees from Tufts University,
Massachusetts, U.S.A., all in electrical engineering.
He is currently an Associate Professor and Director
of the Vision and Image Processing Laboratory in the
Department of Computer and Information Science,
University of Macau, Macau, China. His research in-
terests include chaotic systems, multimedia security,
image processing and understanding, and machine
learning.

He serves as an Associate Editor for Neurocomputing, Journal of Visual
Communication and Image Representation, and Signal Processing: Image Com-
munication. He is a co-chair of Technical Committee on Cognitive Computing
in the IEEE Systems, Man, and Cybernetics Society. He was a recipient of the
Third Price of Macau Natural Science Award, in 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

